

Übertragung auf RK mit den Gleichungen $Y(s) = F_w(s)W(s) + F_z(s)Z(s)$,

RK ist stabil, wenn die Pole von $F_w(s)$ und die Pole von $F_z(s)$ links der J-Achse liegen.

Da $F_w(s)$ und $F_z(s)$ den gleichen Nenner $1 + F_0(s)$ haben, gilt (sofern in $F_0 = F_1 F_2 F_3$ keine Pol-Nullstellen-Kürzungen vorkommen): Pole von $F_w(s)$ = Pole von $F_z(s)$ = Nullstellen von $1 + F_0(s) = 0$

Der RK ist genau dann stabil, wenn alle Nullstellen seiner charakteristischen Gleichung $1 + F_0(s) = 0$ links der j-Achse liegen. Dies gilt auch, wenn die ÜF $F_0(s)$ des offenen Kreises totzeitbehaftet ist.

Grundlegendes Stabilitätskriterium für RKs

Geschwindigkeitsregelung

Für
$$T_1 = 0$$
 (wegen $T_1 \ll T_2$) gilt: $F_0(s) = \frac{V}{s(1 + T_2 s)}$ mit $V = k_R k_1 k_2$ und $T_2 > 0$

⇒ charakteristische Gleichung:

$$1 + \frac{V}{s(1+T_2s)} = 0 \implies s + T_2s^2 + V = 0 \implies s^2 + \frac{1}{T_2}s + \frac{V}{T_2} = 0;$$

$$\Rightarrow \alpha_{1,2} = -\frac{1}{2T_2} \pm \sqrt{\frac{1}{4T_2^2} - \frac{V}{T_2}} = -\frac{1}{2T_2} (1 \mp \sqrt{1 - 4VT_2})$$

-
$$0 < 4VT_2 \le 1 \implies \alpha_{1,2}$$
 reell und stets < 0

$$0 < 4VT_2 \le 1 \implies \alpha_{1,2} \text{ reell und stets} < 0$$

$$4VT_2 > 1 \implies \alpha_{1,2} = -\frac{1}{2T_2} (1 \mp j\sqrt{4VT_2 - 1})$$

RK ist für alle V>0 stabil (sofern T₁=0 gilt)

Beispiel 2: *Temperaturregelung*

$$F_0(s) = \frac{V}{1+Ts}e^{-T_r s}$$
 => charakteristische Gleichung: $1 + \frac{V}{1+Ts}e^{-T_r s} = 0$;

$$=> 1 + Ts + Ve^{-T_t s} = 0$$

transzendente Gleichung; nicht formelmäßig lösbar; im Allgemeinen unendlich viele => Nullstellen.

Das grundlegende Stabilitätskriterium vereinfacht die Stabilitätsuntersuchung noch nicht genügend. Gesucht ist ein Kriterium, mit dem man über die Lage der Nullstellen der charakteristischen Gleichung zur j-Achse entscheiden kann, ohne die Nullstellen berechnen zu müssen.

→ Nyquist-Kriterium

3.5 Frequenzgang und Ortskurve des offenen Kreises

3.5.1 Der Frequenzgang (FG)

Definition:

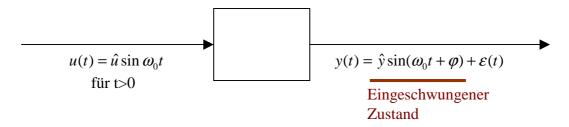
Der FG eines LZI-Gliedes ist dessen ÜF F(s) auf der j-Achse (d.h. in F(s) ist $s=j\omega$ zu setzen)

Beispiel:

P-T₁-Glied mit

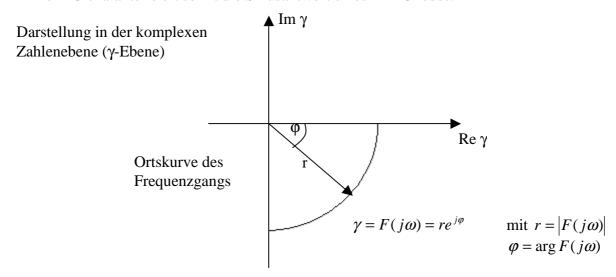
$$F(s) = \frac{k}{1+Ts} \xrightarrow{s=j\omega} F(j\omega) = \frac{k}{1+Tj\omega} = \frac{k}{1+T^2\omega^2} - j\frac{kT\omega}{1+T^2\omega^2} = \frac{k}{\sqrt{1+T^2\omega^2}} e^{-j\arctan T\omega}$$

Bedeutung des FG:



Dabei gilt: $\hat{y} = |F(j\omega_0)|\hat{U}$ $\varphi = \arg(F(j\omega_0))$

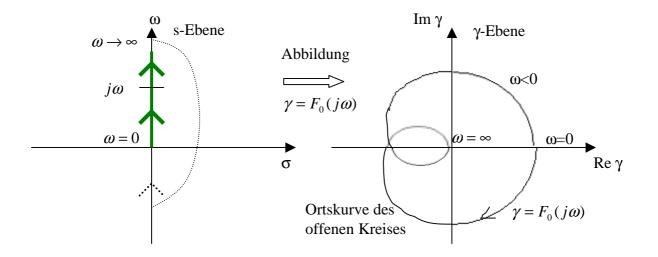
=>Der FG charakterisiert somit die Sinusantwort eines LZI-Gliedes.



3.5.2 Die Ortskurve des offenen Kreises (OK)

Definition:

$$\gamma = F_0(j\omega) \quad \text{mit } \omega \ge 0$$



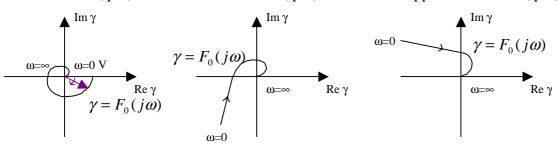
Regeln zur Erstellung einer OK-Skizze: siehe Beiblatt 19

Annahme: offener Kreis = Verzögerungssystem mit n=4 und

P-Verhalten (q=0)

I-Verhalten (q=1)

Doppel-I-Verhalten (q=2)



Beispiel zu Regel 4:

Offener Kreis mit I-Verhalten, n=3, m=1, b_m>0 und ohne Totzeit.

